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Weighing matrices

A weighing matrix W (n,w) is a n × n matrix W whose
elements are 0,±1 such that WW T = wIn. W (n,w) denotes
both a single matrix and the class of all W (n,w).

The following are W (2,w), 1 ≤ w ≤ 2(
I2

1 1
1 −

)
The following are W (3,w), 1 ≤ w ≤ 3(

I3 None None
)

The following are W (4,w), 1 ≤ w ≤ 4(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 − 0 0
0 0 1 1
0 0 1 −

0 1 1 1
1 0 1 −
1 − 0 1
− − 1 0

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

)



Questions

Applications: Chemistry, Spectroscopy, Quantum Computing
and Coding Theory.

For which n and w W (n,w) 6= ∅ is an open question.

Hadamard conjecture: W (n, n) 6= ∅ for every n = 4k , k ∈ N.

The main mathematical interest is to exhibit a concrete
W (n,w) or to prove that it does not exist.

To date the smallest Hadamard matrix whose existence is
unknown is H(668).

Given W (n,w) it is a mathematical interest to find if an
(anti)symmetric W (n,w) exists.

In this note we present a concrete symmetric W (23, 16)
derived from W (23, 16) found recently.



Isomorphic (Hadamard equivalent) weighing matrices

A monomial matrix (a signed permutation) P is a
permutation matrix whose non zero elements are ±1.

Two matrices U,V are isomorphic (Hadamard equivalent) if
there exists two monomial matrices P,Q with PUQt = V .

The following exhibits an Hadamard equivalence between the
Sylvester matrix H2⊗ H2 and the circulant matrix CH4.

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −

] [
1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

] [
0 0 0 1
0 1 0 0
0 0 1 0
− 0 0 0

]
=

[− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −

]



Classifying equivalence classes

All Hadamard matrices of order n with n ≤ 12 have one
Hadamard equivalence class. There are 5 Hadamard
equivalence classess of Hadamard matrices of order 16, 3 for
n=20 and 60 for n=24 .

Chan Rodger Seberry classification. [CRS] classified (up to
Hadamard equivalence) all weighing matrices of weight w ≤ 5
and all weighing matrices of order n ≤ 11. They used what is
called in Assaf’s paper [G] the support geometry.

Harada Munemasa classification [HM] they classify all
weighing matrices of order n ≤ 15, n = 17 and all
W (16,w),w = 6, 9, 12 and W (18, 9). For example they
found 11891 classes of W (18, 9)

In this work we construct an invariant of the equivalence class
and use it to find isomorphisms between weighing matrices.

The isomorphisms between W (23, 16) and W (23, 16)T are
used to find a symmetric representative within this class.



An example

We will illustrate our definitions on the following matrices:

Let W be the W (7, 4) weighing matrix (Taken from
Wikipedia, and altered)

W =



1 1 1 1 0 0 0
1 −1 0 0 1 1 0
1 0 −1 0 −1 0 1
−1 0 0 1 0 1 1

0 1 −1 0 0 1 −1
0 −1 0 1 −1 0 −1
0 0 1 −1 −1 1 0


Consider the submatrix Ro = W [2, 1, 0]: 1 0 −1 0 −1 0 1

1 −1 0 0 1 1 0
1 1 1 1 0 0 0

 .



The orbit of Ro

We define an action by Ro 7→ LRoRT , where L is a 3× 3 and
R 7× 7 monomial matrices.

There are 23 · 3! = 48 monomial matrices of length 3, denoted
L and 27 · 7! = 645120 monomial 7× 7 matrices denoted R
and they present 48 · 645120 = 30965760 pairs. The two pairs
±(L,R) induce the same isomorphism on Ro.

We computed by exhaustive enumeration, the size of the orbit
of Ro relative to this action, and it turns out, that twelve
pairs (6 isomorphisms) (L,R) leave Ro unchanged, and we
think of them as automorphisms of Ro.



The automorphisms of Ro

We conclude that the orbit of Ro has size
30965760/12 = 2580480.

Here is one such automorphism.

L,R =


 −1 0 0

0 0 −1
0 −1 0

 ,



−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1




.



The code of a vector and of a matrix

First, let us define v = [1, 3, 9, . . . , 3m−1].

The code of a vector w ∈ {±1, 0}m is Code(w) = v · wT .
Code is a bijection {±1, 0}m → [−3m−1

2 , 3
m−1
2 ].

The code of w = (1, 1, 1) equals 13.

Given A ∈ Mm×n({±1, 0}) define Code(A) = vA,

The code is a bijection

Code : Mm×n({±1, 0})→
[
−3m − 1

2
,

3m − 1

2

]n
.

Code(Ro) = [13, 6, 8, 9, 2, 3, 1].

Code(A) is not an invariant of the equivalnce class of A.

One way to define an invariant is to compute Code(A′) for all
elements A′ in the class, and then take the ’minimum’ with
respect to some ordering.



projecting into the subset Norm

an Hadamard operation is an action
Monm×m({±1})×Mm×n({±1, 0})×Monn×n({±1})→
Mm×n({±1, 0}).

The size of an orbit might be 2mm!× 2nn!.

We define a subset Norm ⊂ Mm×n({±1, 0}) and a projection
defined in two stages.

Normalization : Mm×n({±1, 0}) � Norm.
Sort : Norm � Norm

Can = Sort ◦ Normalization is a projection.
Mm×n({±1, 0}) � Norm

It holds that code(Can(A)) = code(Can(ART )) for all
monomial matrices R

Thus canonization reduces the enumeration over all pairs
(L,R) to an enumeration over all martices L. This is a
reduction factor of 2nn!/(mn2 log n).



The Normalization Projection

Every nonzero column has a top nonzero element which is ±1.

Multiplying with this leading term gives a column whose
leading term is +1.

Normalization changes the matrix and its code.

The Normaliation needs an enumeration of magnitude mn.

After the normalization the enumeration on R are of order of
magnitude n! instead of 2nn!.

The factor of enumeration saved is 2n

mn . For Ro it is more than
6. For m = 3, n = 23 it is more than 216.

Comment: If we replace v with mi = −[3m−1, . . . , 1], the
effect of Normalize on codes is by z 7→ −|z |.



An example : the Normalization of Ro

1 0 −1 0 −1 0 1
1 −1 0 0 1 1 0
1 1 1 1 0 0 0

  1 0 1 0 1 0 1
1 1 0 0 −1 1 0
1 −1 −1 1 0 0 0

Normalize

[13, 6, 8, 9, 2, 3, 1]

Code

[13, -6, -8, 9, -2, 3, 1]
Normalize

Code



The Sorting Projection

The code of the normalized matrix is an element of
[−3m−1

2 , 3
m−1
2 ]n.

Sorting changes the matrix and its code. Normalized code and
matrix stay normalized after sorting.

The sorting is usually a library package of any scientific
programming language of magnitude nln(n).

Sort ◦ Normalize is a projection called canonization and
denoted Can. Can(A) is isomorphic to A.

Assuming normalization with mi above, it holds that
minR∈Monn×n({±1}) Code(ART ) = Code(Can(A)).

Sort saves a factor of enumeration n!
nln(n) . For Ro it is more

than 360. For m = 3, n = 23 it is more than 22!
5 .



An example : the Sorting of the Normalized Ro

1 0 1 0 1 0 1
1 1 0 0 −1 1 0
1 −1 −1 1 0 0 0

  1 0 1 1 0 0 1
0 1 −1 0 1 0 1
−1 −1 0 0 0 1 1

Sort

[13, -6, -8, 9, -2, 3, 1]

Code

[-8, -6, -2, 1, 3, 9, 13]
Sort

Code

.



The code invariant of a rectangular matrix

Given a matrix A we define the code invariant of A by

CI (A) = min
L∈Monm×m({±1})

Code((Can(LA))).

For A and B of the same dimensions, CI (A) = CI (B) if and
only if A and B are Hadamard equivalent.

CI (Ro) = [−11,−6, 1, 3, 4, 9, 10].

The calculation of CI (A) has complexity 2mm!n2mln(n)
instead of 2n+mn!m! and presents a vast reduction.

Still, if m is large CI (A) can not be calculated practically.



The multiple code invariant of a matrix

Given A ∈ Mm×n({±1, 0}) it might be impracticle to calculate
CI (A).

So choose d ≤ m. There are
(m
d

)
subsets of {1, 2, · · ·m} of

cardinality d . Each such subset determines a submatrix
S(A) ⊂ A with d rows.

Each of the above S(A) has a computable CI .

Define the multiple code invariant of A and d , MCI (A, d), as
the multiset of the CI’s of the above submatrices.

MCI (A, d) is an element of
(

[−3d−1
2 , 3

d−1
2 ]n

)(md)
.

If A and B are Hadamard equivalent, every subset of d rows
of A maps to a subset of d rows of B, and thus have the same
CI so that MCI (A, d) = MCI (B, d).



some numerical values for some MCI (A, d)

For A = W (7, 4) mentioned above, it holds that
MCI (W , 3) =
{[−11,−6, 1, 3, 4, 9, 10]× 28, [−8,−6,−2, 0, 4, 10, 12]× 7}.
In the multiset with

(7
3

)
= 35 CI ’s 28 terms have

CI = [−11,−6, 1, 3, 4, 9, 10] and 7 terms have
CI = [−8,−6,−2, 0, 4, 10, 12]

for the same W ,
MCI (W , 4) = {[−35,−24,−18, 1, 7, 12, 31]×
28, [−38,−24,−18,−6, 4, 10, 28]× 7}.



More on MCI(W (7, 4))

Let W = W (7, 4)

The fact that MCI (W , 3) contained only two distinct CI ’s
deserves explanation.

The {0, 1}-matrix DG = J − |W | ([G], [SD],[SM]) is the
incidence matrix of the projective plane (Fano)

X = P2(F2).

There are exactly two different configuration for 3 lines in a
plane:

Star Like: All 3 lines meet at a point;
Triangle like: No common point for the 3 lines.

Hence MCI (DG , 3) will contain two distinct CI’s



More on MCI(W (7, 4))

The same observations is true for PG = |W | since 4 lines in X
determine the complementary 3 lines.

Fact: Every automorphism of PG can be extended uniquely
(up to a total sign) to an automprhism of W .

This is a rare phenomena, but there are some well known
families of weighing matrices having this property.

This explains why MCI (W , 3) has the same multiplicities as
MCI (PG , 3) and MCI (DG , 3).

By the same reasoning, MCI (W , d) has the same
multiplicities as MCI (W , 7− d).



MCI (W (23, 16))

Let

W1 = W (23, 16) found by the ’Shaddow Geometry’ method;[G]

W2 = W (23, 16) found by the ’Tiling’ method([SD], [SM])

By contrast, the multiplicities of MCI (W1, 3) = MCI (W T
1 , 3)

are quite scattered (m × f means m items of frequency f ).

2×1, 2×3, 4, 6×6, 2×12, 13, 2×15, 18, 21, 24, 33, 48, 3×54, 2×57,

60, 66, 2× 72, 87, 102 120, 141, 186, 330

It can be shown that W1 has only 3 automorphisms.

For W2, the list of frequencies is

1×1, 5×5, 1×10, 5×15, 4×20, 2×30, 1×35, 1×45, 3×50, 2×55,

1×75, 1×85, 1×105, 1×115, 1×120, 1×125, 1×135, 1×420



More on MCI (W (23, 16))

Similarly for W T
2 , the list of frequencies is

1×1, 3×5, 4×10, 5×15, 1×20, 2×30, 1×35, 3×40, 1×45, 2×50,

1×55, 2×75, 1×85, 1×90, 2×105, 1×125, 1×130, 1×415

The fact that most frequencies in MCI (W2) are divisible by 5
reflects the fact that the automorphism group is of order 5. A
similar phenomena holds for W1.

We see that W1, W2 and W T
2 are not isomorphic to each

other.

All the other matrices W (n, 16), n = 25, 27, 29 found by the
tiling method satisfied that MCI (W , 3) 6= MCI (W T , 3).

However, as it will turn out, W1 'W T
1 .



MCI as an (strong?) invariant

MCI (, d) is a Hadamard Equivalence invariant which is

Computable.
Quite strong.

MCI (, 3) is not strong enough to separate all isomorphism
classes. Examples:

W (13, 9) has 8 isomorphism classes. MCI (, 3) can only
distinguish 7.
MCI (, 3) is constant along all Hadamard matrices of size 4n.

Using Craigen’s Weaving technique, for every d it is possible
to construct examples in which MCI (, d) is not completely
separating.

Nevertheless, it can give us a lot of information and help us to
construct isomorphisms when they exist.



Extendable Partial Isomorphisms

Definition

Let A and B be m × n {0,−1, 1}-matrices. A partial isomorphism
is an isomorphism between SA and SB, two partial d × n
submatrices of A and B.

When MCI (A, d) = MCI (B, d), this gives rise to many partial
isomorphisms from A to B.

Question: How do we know whether a partial isomorphism
extends to a full isomorphism A ' B?

Answer:(For square nonsingular A) If it extends, then in
L1 · SA · RT

1 = SB and its extension LART = B, we must
have R1 = R.

Therefore, we can extract L:

L = BRA−1 = BR1A
−1,

and test that L is indeed monomial.



Extendable Partial Isomorphisms

Definition

Let A and B be m × n {0,−1, 1}-matrices. A partial isomorphism
is an isomorphism between SA and SB, two partial d × n
submatrices of A and B.

When MCI (A, d) = MCI (B, d), this gives rise to many partial
isomorphisms from A to B.

Question: How do we know whether a partial isomorphism
extends to a full isomorphism A ' B?

Answer:(For square nonsingular A) If it extends, then in
L1 · SA · RT

1 = SB and its extension LART = B, we must
have R1 = R.

Therefore, we can extract L:

L = BRA−1 = BR1A
−1,

and test that L is indeed monomial.



From MCI to the full isomorphism space Isom(A,B)-First
method

Here’s an algorithm:

1 Suppose that A,B are two nonsingular, square matrices, with
MCI (A, d) = MCI (B, d).

2 Take two isomorphic d × n matrices SA, SB.

3 Enumerate over all isomorphisms SA→ SB and test if they
are extendable.

4 Repeat for the same SA and all other SB having the same CI .



Complexity issues

It is desirable to choose SA with the least multiplicity in
MCI (A).

The number of isomorphisms SA→ SB may be too large
because:

SA (and SB) may have many zero columns, and there is a cost
factor of 2 per each.
SA (and SB) may have too many repeated columns, and there
is a factorial cost factor per each.

These problems happen when d is small, and greatly reduce
as d grows.

On the other hand there is a cost of 2dd! due to the unknown
L1 (and the computation of MCI ).

Considering only matrices with d + 1 rows that include the
given S(A) as a submatrix reduce the cost of increasing
MCI (A, d)→ MCI (A, d + 1).



Complexity issues

It is hard to estimate complexity.

Worst case complexity is quite large: For A = B = identity
matrix, there are 2nn! isomorphisms, so it is at least as bad as
Ω(2nn!).

But for ’heavy’ weighing matrices A = W (n,w) with
n/w = O(1), the ’average’ case complexity is quite
reasonable:

Repetitions and zero colums in SA stop in probability as soon
as d = O(log n). The MCI cost is then
2dd!

(
n
d

)
dn2 log n = O((2n)d+4). Hence the ’average’ case

complexity is at most

Av = (2n)O(log n).



Our experience with W (23, 16)

Let W be the W (23, 16) found by the Shaddow Geometry method.
We wanted to compute Isom(W ,W T ).

Starting with MCI (W , 3) and choosing a specific SA, we saw
multiple columns with multiplicities [5, 4, 4, 4, 3] and the 3
repeating columns were zero columns. This implies that

#Isom(SA,SB) ≥ 5!4!33!23 = 39813120,

which is quite big.

Then we went to MCI (W , 4). We multiplicities of columns in
SA were

[4, 3, 2, 2, 2, 2, 2, 2, ]

and the 3 repeating columns were zero columns Hence

#Isom(SA, SB) ≥ 4!3!(2!)623 = 73728.

Much better.



Our experience with W (23, 16)

Then, in MCI (W , 5) the multiplicities in SA reduced to
[2, 2, 2, 3, 3] with no zero column. Therefore we got an
estimate of

#Isom(SA, SB) ≥ 2!33!2 = 288.

This turned out to be the best setting, regarding the cost of
the MCI .

At the bottom line, we found that Isom(W ,W T ) contains 6
elements.



From MCI to the full isomorphism space
Isom(A,B)-Second method

The algorithm presented above to retrieve a full isomorphism
has some difficulties. There is an alternative method.

We call the first method the inversion method and the second
one the eigenmethod.

The eigenmethod

works for A and B which are not necessarily square and regular.
Reduces to the case of true permutation isomorphisms.
Works with smaller d .
has less complexity of running time.
has less complexity of conditions to assume prior to the
implementation
but has a more complicated algorithm.

We will discuss the eigenmethod only briefly without
supporting examples.



The eigenmethod

We begin with a partial isomorphism SA→ SB,
Li (SA)RT

i = SB.

WLOG: Assume that SA=SB are positioned at the top layer
of A and B and are of canonical form.

Outline

I Modify A by signs in rows and columns, so that B = PAQT with
permutation matrices P and Q.

II Discover P by the eigenvalue method.

III Discover Q by column sorting.



Stage I: The eigenmethod - Getting rid of signs

The fact that SA = SB still leaves many candidate
isomorphisms SA→ SB to be extended to A→ B.

We divide the matrices A and B as

+ − + − −
+ + − − +
+ + + − −

+ − − + − +
+ + + + + + + +

+ − + − −
+ − − + − +
+ − − − + +
+ + − − −
+ − − − + +

+ + − −

B
+ − + − −
+ + − − +
+ + + − −

+ − − + − +
+ + + + + + + +

+ − + − −
+ − − + − +
+ − − − + +
+ + − − −
+ − − − + +

+ + − −

A

d =

b

A similar partitiom of A was used constructing the shaddow
geometry [G].



Stage I: The eigenmethod - Getting rid of signs

Assume: The first b columns of SA are different from the last
n − b columns.

The algorithm:

Permute equal columns only in the corner of A.
Normalize the rows of A starting from row d + 1.
Enumerate on the signs of columns and rows which are zero
within the margins of A.

Under the enumeration, compute the Can of the vertical parts
of the margins of A and B and test if they are equal.

If equal, we may assume that PAQT = B for permutation
matrices P and Q. Continue to the next stage.



Stage II: Discovering P by eigenvectors

If PAQT = B, then PAATPT = BBT , so AAT and BBT are
similar by P.

For Weighing Matrices AAT = BBT = Im there is no
information.

We may apply a pointwise functions f so Pf (A)QT = f (B).
Also transpose inversion works: Pf (A)−1TQT = f (B)−1T .
May combine few such operations and finally take Gram
products.

We end up with matrices GA and GB similar by P:

PGAP
T = GB .

At this stage we may test whether they have the same
characteristic polynomial.



Stage II: Discovering P by eigenvectors

P transforms the eigenspaces of GA to those of GB .

Simplest Case: For an eigenvalue λ, the eigenspace is simple 1
dimensional, and the eigenvector vλ,A of A has distinct entries.

In this case, we readily read the permutation P from

Pvλ,A = vλ,B .

When this does not happen, it is mainly because there are
many solutions for P. There are good ways to solve this, but
we will not explore them here.



Stage III: Finding Q

If P is known, we still need to find Q.

Suppose that PAQT = B with PA known. Then

If A is invertible, Q = B−1PA.
In General: Find out Q by sorting the columns of PA and B.



An (anti)symmetric representative in a class

Suppose that there exists a (anti)-symmetric S in the
isomorphism class of A.

Exercise: There exists an isomorphism LART = AT , such that
L = ±RT .

So going over all elements of Isom(A,AT ), we can find such
an isomorphism.

Now, LA = ATR = (RTA)T = (±LA)T is an (anti)symmetric
matrix Hadamard equivalent to A.

We found one symmetric representative W (23, 16) for the
W (23, 16) found by the shaddow geometry method and 12
symmetric representatives for W (7, 4) which are not
equivalent by means of Symmetric Hadamard equivalence.



An example of a symmetric W (7, 4) obtained for the given
one by our method

W =



0 0 1 −1 −1 1 0
0 −1 0 1 −1 0 −1
1 0 −1 0 −1 0 1
−1 1 0 0 −1 −1 0
−1 −1 −1 −1 0 0 0

1 0 0 −1 0 −1 −1
0 −1 1 0 0 −1 1





An example of a symmetric W (23, 16) obtained for the
given one by our method



0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1
0 0 0 1 1 −1 −1 −1 1 1 −1 0 0 0 0 1 −1 1 −1 −1 1 1 −1
0 0 0 1 1 1 1 0 0 0 0 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1
0 0 0 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 1 0 0 0 0
1 1 −1 −1 0 −1 −1 −1 −1 0 1 0 1 0 0 1 1 −1 0 0 1 −1 −1
1 1 −1 1 0 1 1 −1 1 −1 0 1 0 0 0 1 −1 0 1 −1 0 −1 1
1 1 −1 1 0 −1 1 0 −1 1 −1 0 0 0 1 −1 0 1 1 1 −1 0 −1
1 1 −1 −1 0 1 −1 1 0 −1 −1 0 0 1 0 0 1 1 −1 −1 −1 1 0
1 1 1 0 −1 1 1 0 1 0 0 −1 0 −1 1 1 0 −1 −1 1 0 1 −1
1 1 1 0 1 −1 −1 1 0 0 0 0 1 −1 −1 0 −1 −1 1 0 −1 1 1
1 1 1 0 1 1 −1 0 0 0 1 −1 −1 1 0 −1 −1 1 0 1 1 −1 0
1 1 1 0 −1 −1 1 0 0 1 0 1 −1 0 −1 −1 1 0 −1 −1 1 0 1
1 −1 −1 1 −1 0 −1 1 1 −1 0 1 0 −1 −1 −1 0 0 0 1 1 0 −1
1 −1 −1 −1 1 0 1 1 −1 0 1 0 −1 −1 1 0 −1 0 0 −1 1 1 0
1 −1 −1 1 −1 0 −1 −1 0 1 1 −1 −1 1 0 0 0 −1 0 0 −1 1 1
1 −1 −1 −1 1 0 1 0 1 1 −1 −1 1 0 −1 0 0 0 −1 1 0 −1 1
1 −1 1 −1 −1 1 0 0 −1 1 −1 1 0 1 −1 1 −1 0 1 0 0 0 −1
1 −1 1 1 1 −1 0 1 0 −1 −1 0 −1 1 1 1 1 −1 0 0 0 −1 0
1 −1 1 1 1 1 0 −1 −1 0 1 1 1 −1 0 0 1 1 −1 0 −1 0 0
1 −1 1 −1 −1 −1 0 −1 1 −1 0 −1 1 0 1 −1 0 1 1 −1 0 0 0





A Schematic Diagram

Matrix A

Matrix B

Full '?

Partial Matrix
S(A)1

Partial Matrix
S(A)r

Partial Matrix
S(B)1

Partial Matrix
S(B)r

MinL Can(L · S(A)i ))

CI

MCI (A)

CI

MCI (B)

CI

CI

Partial '
v = [1, 3, . . . , 3m−1]
Code(X ) = vX

Can = Sort ◦ Code ◦ Normalize
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