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Introduction HadAut

Weighing matrices

A weighing matrix W (N,w) is a N × N matrix W whose
elements are 0,±1 such that WW T = wIN . W (N,w) denotes
both a single matrix and the class of all W (N,w).

The following are W (2,w), 1 ≤ w ≤ 2(
I2

1 1
1 −

)
The following are W (3,w), 1 ≤ w ≤ 3(

I3 None None
)

The following are W (4,w), 1 ≤ w ≤ 4(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 − 0 0
0 0 1 1
0 0 1 −

0 1 1 1
1 0 1 −
1 − 0 1
− − 1 0

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

)
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Weighing matrices

N is called the order and w is called the weight of W .

The weight and order satisfiy the inequality 0 ≤ w ≤ N.

W (N,N) denoted H(N) is called a Hadamard matrix.

Applications: Chemistry, Spectroscopy, Quantum Computing
and Coding Theory.

Main question: Determine the parameters for which a
W (N,w) exists.

The Hadamard Conjecture: H(N) = W (N,N) exists for every
N = 4k , k ∈ N.

To date the smallest unkonwn Hadamard matrix is H(668).

The previous unknown Hadamard matrix H(428) was found in
2005 by H. Kharaghani and B. Tayfeh-Rezaiea
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Families of weighing matrices

Sometimes it is possible to find the existence of an infinite
family of weighing matrices.

Some well-known families of Hadamard and weighing
matrices. Let q be an odd prime power.

Payley Conference Matrices: W (q + 1, q)
Payley Hadamard Matrices: H(N) for N = q + 1 or 2q + 2.

Projective Space Matrices: W ( qd+1−1
q−1 , qd).

In the present work we used cohomology of groups to find one
family of (non Hadamard) weighing matrices and 3 families of
Hadamard matrices.
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Ciculant weighing matrices

Assuming some extra structure on W may reduce the
generality of the construction but also may enable the
construction itself.

One of the classical constructions is of a circulant weighing
matrix. [S].

A matrix is circulant if W (i , j) = W (i − j , 1)∀i , j , 1 ≤ i , j ≤ N
where the subtraction is taken modulu N.

An example

A =


x0 x1 x2 x3 x4
x4 x0 x1 x2 x3
x3 x4 x0 x1 x2
x2 x3 x4 x0 x1
x1 x2 x3 x4 x0


In this case there are 35 possible instead of 325 possible
matrices.
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An example of a backcirculant weighing matrix

The following back-circulant matrix becomes a W (6, 4)
plugging the 1st row (−,+, 0,+,+, 0) respectively.



o1 o2 o3 o4 o5 o6
o2 o3 o4 o5 o6 o1
o3 o4 o5 o6 o1 o2
o4 o5 o6 o1 o2 o3
o5 o6 o1 o2 o3 o4
o6 o1 o2 o3 o4 o5

 ,



−1 1 0 1 1 0
1 0 1 1 0 −1
0 1 1 0 −1 1
1 1 0 −1 1 0
1 0 −1 1 0 1
0 −1 1 0 1 1


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An example of a nega-cyclic matrix

The (back) circulant matrices form too restrictive structure.
The following is an example of a (back) nega-cyclic structure.

W =



o1 o2 o3 o4 o5 o6
o2 o3 o4 o5 o6 −o1
o3 o4 o5 o6 −o1 −o2
o4 o5 o6 −o1 −o2 −o3
o5 o6 −o1 −o2 −o3 −o4
o6 −o1 −o2 −o3 −o4 −o5


Plugging 1st row (−,−,−, 0,+,−) gives W (6, 5)

W =



−1 −1 −1 0 1 −1
−1 −1 0 1 −1 1
−1 0 1 −1 1 1

0 1 −1 1 1 1
1 −1 1 1 1 0
−1 1 1 1 0 −1


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Support geometry

There is a map W 7→ |W | o1 o2 o3 o4 o5 o6
o2 o3 o4 o5 o6 −o1
o3 o4 o5 o6 −o1 −o2
o4 o5 o6 −o1 −o2 −o3
o5 o6 −o1 −o2 −o3 −o4
o6 −o1 −o2 −o3 −o4 −o5

 7→
 o1 o2 o3 o4 o5 o6

o2 o3 o4 o5 o6 o1
o3 o4 o5 o6 o1 o2
o4 o5 o6 o1 o2 o3
o5 o6 o1 o2 o3 o4
o6 o1 o2 o3 o4 o5


Plugging 0, 1 for all orbits of W gives |W | a {0, 1} matrix.

We view |W | as an incidence matrix of a geometry.

We abusively call |W | the support geometry of W .

Our notion of geometry is weaker than the one usually used.
There might be several different lines determined by the same
set of points.
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Cocyclic Matrices

Definition (Group Development)

Let G be a finite group. A matrix A indexed by G is G -developed
if it has the form

Ag ,h = f (gh).

For the particular case G = Zn this reduces to back circulant
matrices of order n.
It is well known that a G -developed weighing matrix must
have weight w = l2, so this is quite restrictive.
A modification of this is the notion of a Cocyclic Matrix

Definition (Cocyclic Matrices)

A cocyclic G -matrix is a matrix indexed by G of the form

Bg ,h = ω(g , h)f (gh),

where ω : G × G → C× is a 2-cocycle.
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Start with the geometry

Cocyclic matrices were developed by Horadam, DeLauney,
Flannary,. . . [3]

For a map f : G 7→ {0, 1},A is the support geometry, in our
sense, of B.

the two cocycle w presents an element in the second
cohomology group of G ,H2(G ,±1).

This brings the idea to assume a geometry |W |, and use a
group G to obtain signs on orbits of the would be matrix W ,
in order to reduce the enumeration on W .

We used a similar idea (without assuming a group G ) to
firstly find a support geometry for (then unknown) W (23, 16)
and then extend it to all of W (23, 16).

In the 23-16 work we used S |W | = J −W where J is the
matrix all of whose terms equal 1,[1]. We call S |W | the
shadow geometry of W .
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Generalized Weighing Matrices

More generally, let M,N be not necessarily equal natural numbers
and

µn = all roots of unity pf order n, µ+n = µn ∪ {0}.

Definition

A Generalized partial Weighing Matrix is a µ+n -matrix W such that

WW ∗ = wIM , (*=conjugate-transpose) .

Denote W (M,N,w , n) all generalized partial weighing
matrices.

W (N,N,w , 2) gives the classical theory.

µ+1 = {0, 1}- are the values for the geometry.
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Hadamard Operations and Automprphisms

Let Maps(M,N, µ) be the space of all M × N µ+-matrices.

Definition

A Hadamard operation on Maps(M,N, µ) is given by multiplying
both sides with monomial matrices, specifically by

1 Axis permutations,
2 Row or column multiplication by signs in µ,
3 All compositions thereof.

Denote the group of all Hadamad operations on Maps(M,N, µ) by
Had(M,N, µ).

Let Aut(A) be the subgroup of Had(M,N, µ) preserving A.

for n = 1,Had(M,N, 1) consists only of permutations.

Given a geometry |W | we choose G to be any subgroup of
Had(M,N, 1).
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Hadamard equivalence of Weighing Matrices

A monomial matrix (a signed permutation) P is a
permutation matrix whose non zero elements are in µ.

Two matrices U,V are isomorphic (=Hadamard equivalent) if
there exists two monomial matrices P,Q with PUQ∗ = V .

The following exhibits an Hadamard equivalence between the
Sylvester matrix H2⊗ H2 and the circulant Hadamard matrix
CH4.[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −

] [
1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

] [
0 0 0 1
0 1 0 0
0 0 1 0
− 0 0 0

]
=

[− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −

]
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Well known classifications of Hadamard equivalence classes

Another problem is to classify all Hadamard equivalence
classes of a possible weighing matrix.

The existence problem amounts to showing that the number
of equivalence classes exceeds 1.

the following statements concern classical matrices
µ = µ2 = {±1} and M = N.

There is one class for Hadamrad matrices of each order
N ≤ 12, 5 for N = 16, 3 for N = 20, and 60 for N = 24.

Chan Rodger Seberry [CRS] classified all W (N,w) for w ≤ 5
and all W (N,w) for N ≤ 11.

They used a method similar to support geometries.

Harada and Munemasa [HM] classified all W (N,w) for
N ≤ 15, N = 17, W (16,w),w = 6, 9, 12, and W (18, 9).
They found 11891 classes of W (18, 9).
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Geometries and Automorphisms

Hadamard operations on W reduce to permutations on |W |.
Hence there is a homomorphism

Aut(W )→ Aut(|W |)

.

In general this homomorphism is neither injective or surjective.

We assume a support geometry matrix |W | ∈ Maps(M,N, 1)
and a subgroup G ⊂ Aut(|W |).

G has projections πX (G ) (πY (G )) - permutation matrices on
M (N) elements respectively.

We use elements χ ∈ H2(G , µ), ψX ∈ H1(πX (G ), µM) and
ψY ∈ H1(πY (G ), µN). (We abuse notations, it is [χ] who is in
the cohomology, etc.)
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Our Work

χ, ψX and ψY need to satisfy a competablity codition called
orientability.

In the case that ψX = ψY = 0 orientability is stisfied.

X = Y = G implies that ψX = ψY = 0 and our theory
reduces to that of the cocyclic matrices:

The theory includes nega-cyclic matrices as a particular case.

Finding the action of G on the would be W is called the
automorphism lifting problem or also Coloring.

After coloring the enumeration on W reduces, substituting a
single value for each orbit of the action of G on |W |.
Coloring is equivalent to a homomorphism ρ : Ĝ 7→ Aut(W ).

W 7→ |W | induces a group homomorphism Ĝ 7→ G .

Even if W was found, it need not be a weighing matrix.

We use a spectral sequence for constructing ρ

A lot of trial end error gave us the following new infinite
families:
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Thank you1

Thank you for your attention

giora@netanya.ac.il, ghiorad@gmail.com

www.mars.netanya.ac.il/˜ giora/old/research.html
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The Projective space Weighing Matrix Family-Set up

For every prime-power q integers 0 < d and 1 < n|q − 1,
define X to be all the lines through the origin in F d+1, Y to
be all the d dimensional subspaces of F d+1, and
G = PGL(F , d) the quotient of GL(F , d) by the scalar
matrices mId+1,m ∈ µ.

G acts faithfully on X and on Y .

Every choice of a basis in F d+1 gives rise to a non degenerate
bilinear (tracelike) form <,> X × Y 7→ µ+.

Using this form X and Y are shown to be equivalent G -spaces.

The |X | × |Y | incidence matrix defined by W (l , L) = 1 if l ∈ L
and W (l , L) = 0 otherwise is the support geometry matrix.

Changing the arbitrary order of elements in X (Y ) changes X
(Y ) respectively by a permutation and does not change the
Hadamard equivalence classn of |W |.
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Projective spaces Weighing Matrices

Choose χ, ψX and ψY carefully.(trial and error).

In the above setup there is a family of generalized Weighing

matrices W (
qd+1 − 1

q − 1
,
qd+1 − 1

q − 1
, qd , n).

This family equals for n = 2 to the family mentioned in the
introduction.

It holds that Ĝ = Aut(W ) � G = Aut(|W |) is surjective.

For the next family choose also k s.t. 0 < k < d . The
Grasmannian veraiety X = Gr(F , d , k) consists of all the k
subspaces in F d+1. Y is set as G (F , d , d − k). Every choice
of a basis in F d+1 gives rise to a bilinear pairing as above,
G = PGL(F , d) acts on the isomorphic G sets X and Y .
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The Grassmannian Weighing Matrix Family

|X | = |Y | =
[ d
k

]
q

the gaussian binomial coeeficient.

The |X | × |Y | adjacency matrix equals dim(l ∩ L) and for
k ≤ d

2 has k + 1 possible values.

The points with a fixed incidence value form an orbit of the G
action on the adjacency matrix.

Setting W (l , L) to equal 1 if dim(l ∩ L) above is non zero and
0 otherwise gives a geometry |W | with k + 1 orbits.

Choosing smartly χ, ψX and ψY gives the following family

W
([ d

k

]
q
,
[ d
k

]
q
, qk(d−k), n

)
.

Again it holds that Ĝ = Aut(W ) � G = Aut(|W |) is
surjective.

Substututing k = 1, d = d + 1 reduces the Grassmannian
family to the above classical projective space family.
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Set up for the Flag varaiety Weighing Matrix Family

Given r ∈ N and 0 < k0 ≤ k1 ≤ · · · ≤ kr integers, s.t
d =

∑
ki , an r flag is a sequence of subspaces

K0 ⊆ K1 ⊆ K2 · · · ⊆ Kr = F d+1, s.t dim(Ki ) =
∑

j=0,i kj .
In the case r = 1 we denote (after possibly reordering k and
d − k) k0 = k , k1 = d − k and recover the setup for the
Grassmannians.
Observe that r = 1 satisfies the inequality r ≤ n.

Theorem (Flag Variety Weighing Matrices)

Let q be a prime-power, let 0 < k0 ≤ k1 ≤ · · · ≤ kr be integers, let
d =

∑
ki , and let n|q − 1. Assume that n ≥ r . Then there exists a

generalized weighing matrix,

GW

([
d

k0, k1, . . . , kr

]
q

,

[
d

k0, k1, . . . , kr

]
q

, q
∑

i<j kikj , n

)
,

Again Aut(W ) � Aut(|W |).



Introduction HadAut

Thank you2

Thank you for your attention

giora@netanya.ac.il, ghiorad@gmail.com

www.mars.netanya.ac.il/˜ giora/old/research.html
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Quasi Projective/Grassmannian/Flag Weighing Matrices

Theorem (Quasi Projective/Grassmannian/Flag Weighing
Matrices)

Assume that the conditions of the previous theorem are satisfied
and GW (N,w , n) is the matrix guaranteed by the theorem.
Suppose that a circulant weighing matrix CW (M, t, n) exists, for
some M|q − 1. Then there can be constructed a generalized

W = GW (MN, tw , n), Aut(W ) � Aut(|W |),

and in general W 6' GW (N, n, n)⊗ CW (M, t, n).

Remarks:

1 This construction is sort of a Twisted Kronnecker Product.

2 W cannot be obtained from both matrices by Craigen’s
weaving technique, as can be shown by computing a certain
invariant.
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Three families of Hadamard matrices

Theorem

for every prime power q ≡ 1 mod 4 , there exists an Hadamard
marix H(4q(q + 1)).

Theorem

for every prime power q ≡ 3 mod 4, such that q − 4 is a prime
power too , there exists an Hadamard marix H(8q(q − 3)).

Theorem

for every prime power q ≡ 3 mod 4, such that q − 2 is a prime
power too , there exists an Hadamard marix H(8q(q − 1)).
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A Schemmatic Diagram of the Filtration

Coh2

Coh1

Coh0

Cocyclic
(Coh0 = Coh1)

Projective
Grassmannian

Flag

G -Developed

G -Invariant

Association Schemes
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