Completing Hadamard and Weighing Matrices Using LLL

Radel Ben-Av¹ Giora Dula⁴ Assaf Goldberger² Yossi Strassler³ ArasuFest, 1 Aug 2019

¹Holon Institue of Technology rbenav@gmail.com

²Tel-Aviv University assafg@post.tau.ac.il

- ³ Dan Yishay danyishay@gmail.com
- ⁴ Netanya Accademic College giora@netanya.ac.il

In this presentation we will discuss

• Given a "1/2"-Hadamard Matrix, How to complete to a full.

Other things that can be done, but will not be discussed

- Creating "1/2"-Hadamard Matrices.
- Solve the equation $XX^T = A$ under 'generic' conditions.

In all items, we will use the famous LLL algorithm. Our results are practical for dimension \leq 200, but no proofs.

The LLL Algorithm

 This algorithm (due to Lenstra, Lenstra and Lovasz, 1982) was invented for factoring polynomials over Q.

The Basic Problem Given a lattice $L \subset \mathbb{R}^d$, find a nearly orthogonal basis.

- The LLL algorithm solves this problem with partial success:
- Notation: Given a basis $b_1, \ldots, b_d \in \mathbb{R}^d$, let $\{b_i^*\}$ be its Gram-Schmidt vectors, and write

$$b_i = \sum_j \mu_{i,j} b_j^*.$$

The LLL Algorithm

Definition

A basis b_1, \ldots, b_d of a lattice L is LLL-reduced, if (i) $|\mu_{i,j}| < 0.5$ for all $i \neq j$. (ii) for all k, $(\delta - \mu_{k,k-1}^2)||b_{k-1}^*||^2 \leq ||b_k^*||^2$. (Lovasz condition)

- The two conditions make LLL-reduced bases be nearly orthogonal, and basis vectors relatively short.
- Fact: We have the norm bounds:

$$||b_1|| \le 2^{(d-1)/2} \cdot \lambda_1(L),$$

where $\lambda_1(L)$ is the length of the shortest nonzero lattice vector.

- In practice, LLL computes the shortest vector within much smaller bounds.
- The Unimodular LLL-Phenomena: For a lattice L ≃ cZ^d, the LLL computes the (unique up to signed permuation) standard basis, in practice for d ≤ 200.

Our Alogrithm

We are given a matrix 1/2H of size $2n \times 4n$ which is partial Hadamard.

 Let L₀ be the lattice spanned over Z by the rows of 1/2H. Compute

$$L_1 = L_0^{\perp} = \{ v \in \mathbb{Z}^{4n} \mid \langle v, \ell \rangle = 0 \ \forall \ \ell \in L_0 \}.$$

2. Let

$$W = \{ v \in \mathbb{Z}^{4n} \mid v_i \equiv v_j \mod 2 \ \forall i, j \}.$$

Compute the intersection $L_2 = L_1 \cap W$.

3. Compute an LLL basis of L₂. If everything is ok, we get the list of completing vectors.

For every integral matrix $M \in M_{m imes n}(\mathbb{Z})$ there exists a decompositon

$$U_L M U_R = D,$$

such that

- D is m imes n diagonal with diagonal $d_i \ge 0$ and $d_1 |d_2| \cdots |d_m$ and
- U_L , U_R are unimodular.

 d_i are uniquely determined and are called the elementary divisors

Computing $L_1 = L_0^{\perp}$

Let 1/2H be our partial Hadamard matrix.

• Comupte the SNF

$$U_L \cdot 1/2H \cdot U_R = D.$$

• It can be shown that the bottom n - m rows of U_R^T are a basis for L_0^{\perp} .

Unfortunately, the lattice L_1 is too big and the completion is not a basis of L_1 .

Intersecting with W

Clearly, the lattice spanned by the completion vectors is contained in

$$W = \{ v \in \mathbb{Z}^{4n} \mid v_i \equiv v_j \mod 2 \ \forall i, j \}.$$

So we may form the lattice $L_2 = L_1 \cap W$.

Method

- 1) Let $B = \{b_1, \ldots, b_{2n}\}$ be a basis for L_1 .
- 2) We compute the lattice spanned by vectors λ s.t.
 - $\sum_{i} \lambda_i b_i \in W$. This gives linear equations mod 2 on λ .
- Solve the linear system and let Ω₁,..., Ω_r ∈ Z²ⁿ be lifts to Z be a basis to the solution space.
- 4) Then L_2 is spanned by $\Omega_i B$ and the rows of 2B.
- 5) Use SNF to compute a basis of L_2 .

Final Stage

Now, compute an LLL-reduced basis to L_2 .

- Hopefully, L_2 is the lattice spanned by the completion vectors.
- This happens when $vol(L_2) = vol(L_0) = (4n)^n$. In general, all we can say is $vol(L_2)|(4n)^n$.

Defintion-Theorem

A lattice L spanned by Hadamard vectors is called regular if

 $span_{\mathbb{Q}}(L) \cap W = L \iff L$ has elementary divisors $1, 2, 2, \dots, 2$.

If the first half 1/2H is regular, then we can prove that L_2 is spanned by the completion.

• In this case, the Unimodular LLL Phenomena on L₂ will produce the (Unique) completion basis.

- We presented a practical algorithm for completing Hadamard matrices from the half.
- We do not have proofs, but it works for sizes up to 200.
- Even more important: If we are given a 1/2-Hadamard matrix, this algorithm practically shows that it is (not) completable.